EXTENSION OF ASSEMBLYSCRIPT FUNCTIONALITY THROUGH SOURCE-TO-SOURCE
COMPILATION

An Honors Thesis Presented
By

GRIFFIN EVANS

Approved as to style and content by:

** Marius Minea 10/11/23 18:36 **
Chair

** Emery D Berger 10/11/23 21:43 *x*
Committee Member

** Philip Sebastian Thomas 10/16/23 09:50 **
Honors Program Director

ABSTRACT

WebAssembly is a language intended to be used to create high-performance programs that run within web
pages. Following the model of traditional low-level assembly languages, it is designed to be a target for
compilation from higher-level languages. AssemblyScript is a variant of TypeScript which is able to be
statically compiled into WebAssembly code. Since TypeScript and its parent language JavaScript are already
ubiquitous in web development, AssemblyScript acts as an easy platform for web developers to adapt to when
needing to take advantage of the performance that WebAssembly offers. However, not all aspects of TypeScript
are yet supported in AssemblyScript, including features such as closures, iterators, and for...of loops which are
vital to many common design patterns used in TypeScript code.We introduce an extension to the
AssemblyScript compiler which allows one to write AssemblyScript code using closures, iterators, and for...of
loops by first transforming it via source-to-source compilation into behaviorally identical code which is
compatible with the existing compiler. This enables programmers to more directly adapt existing code and
design concepts from TypeScript into AssemblyScript and to write new code which more closely matches the
capabilities of TypeScript while maintaining the performance benefits of AssemblyScript.

Table of Contents

Table Of CONTENES. ... e 1
R 1 o T U T3 1 o TSRS 3
1.1. AssemblyScript and WebASSEMDIY..........oooiiiiiiiii e 3
1.2 MOBIVALION. ... 4

B8 = T o1 (o | {0 U o o PR 6
K Y/ (=] 1 g ToTe (o] (o T V2O PP PP S PUPPPUPPPPRN 10
3.1, ClOSUIES.....euuuiiieiiititttteeeete ettt et e et et e eeeeeeeeeeeeeeeeeeeeeeeaeeaeeaaeeaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaeees 10
3.1.1. CloSUres iN JAVASCIIPL.....ooiiiiiiii e 10

3.1.2. Limitations of AssemblyScript and its Compiler...........ccccvvveviiiiiiiiiiiieiieieiieeeeeeee, 10

3.1.3. Transformation of SCOPES........ccooiiiiiiiiiii e 11
3.1.3.1. Statements and Function Calls...........cccccooiiiiiiee e 12

3.1.3.2. Block-scoped Variables.........ccooiiiiiiie e 13

3.1.3.3. EXported FUNCHONS.uiiiiiiiieiiiiiieee e e e 16

3.2, IHErabIE ODJECES. ... uuuiiiiiiiiiiiiiiiiie ittt e e e e e e e e e et e aaaaaaaaaaaaaaaaaas 17
3.2.1. lterators in JavaSCript. ... 17

3.2.2. Limitations of AssemblyScript and its Parser............cccoviviiiiiiiieen 18

3.2.3. Transformation of Declaration and Creation of Iterators............cccccccovnniiniinininnns 20

TR T (o] J o il o To] o 1< J 22
3.3.1. for...of Loops iN JavaSCript...........ooooiiiiiiiiii e 22

3.3.2. Transformation of for...0f LOOPS.......ccoviiiiiiiiiiiiiiiie 22
=T U L S 26
g O O [1= U PSPPSR 26
4.1.1. CorreCtNESS TESHNG.....uuiiiiiiiiiiiiiieeeeeeeeeeeeee e 26

4.1.2. Performance MetriCS.........uuuiiiiiei et 28

G T I 0 = o o 1 34

| (= =1 o] =PRSS 35
4.2.1. COrrectNeSS TeSHING.uuuiiiiiiiiiite e 35

4.2.2. Performance MetriCS..........ueiiiiiiiiiee e 38

o 1 01 = [o 1 42

ST O [od 011 o o PSPPSR 44
B. REIEIENCES. ... e 47
7. Appendix: Benchmark Code and Transformation Output Examples.......................cco. 49
7.1. “Closures of logarithms with varying bases”..................ccccc e, 49
7.1.1. AssemblyScript with Closure EXtension..............coooiiiiiiiiiiiiiiies 49
7.1.1.1. Source-to-Source Compilation OUPUL.............eevviiieiiiiiie e 50

7.1.1.2. TYPeSCriPt CONVEISION....cciiiiiiiiiiiiieeeieee ettt 51

7.1.2. AssemblyScript Storing Denominators without Closures....................c.cccl. 52

7.1.3. AssemblyScript “Naive” APProach..........cccccvuuriiriiiiiiiiiiieeiieeeeeeeeeee e eeeeeee e 53
7.2. “Closures storing varying functions and incrementing variables”..................cccoceenne 53
7.2.1. AssemblyScript with Closure EXteNSiON...........ooccuiiiiiiiiiiiie e 54
7.2.2. AssemblyScript without EXTENSION..........oooiiiiiii e 55
AR T 1 (=1 = 1 (o]l = 1= o Ted o g =T o 4] T T 57
7.3.1. CuStom Iterator ClasSes.coocuuiiiiiiiii et 57
7.3.2. “lteration over array of bases for logarithms and exponents”.............c..ccccoeeuninnee. 58
7.3.2.1. AssemblyScript using Custom Iterator.............ccccoiiiiiiiiiiii e 58
7.3.2.1.1. Source-to-Source Compilation Output............ccevvvviiiiiiiiiiiiiieeeeeeeeeeee, 58

7.3.2.2 AssemblyScript without Iterators...............c..oo o, 59

7.3.3. “Iteration over array nested with incrementation loop, with varying loop nesting and
NUMDET Of IHEIAtIONS”.......eeiiiiiiiii e e e e e e e e e e e e e e e e e e aaaaaaaaaaas 59

1. Introduction

1.1. AssemblyScript and WebAssembly

WebAssembly [1][2][3] is a language intended to be used to create high-performance
programs that run within web pages, but it is difficult for programmers to directly write code for it
as it is modeled after traditional low-level assembly languages, rather than being a higher-level
language like the other common languages used in web programming, particularly JavaScript.
AssemblyScript [4] is a modified form of the language TypeScript (which in turn is a superset of
JavaScript allowing for static typing) designed to be compiled into WebAssembly. This allows
web programmers to take advantage of the performance benefits of WebAssembly without
needing to learn a particularly different syntax or design philosophy from that which they are
already familiar with from JavaScript and TypeScript. In fact in some instances it allows for
existing TypeScript code to be adapted into a compiled form with minor or no change to the
source itself, as most of AssemblyScript is a direct subset of the features and syntax of
TypeScript.

However, AssemblyScript is ultimately a variant of TypeScript rather than strictly a
subset. Though most of the features of AssemblyScript are taken directly from TypeScript, some
additions and changes are made in order to allow the code to be statically compiled and to allow
the features to better map to those of WebAssembly. While TypesScript enables type checking,
AssemblyScript further enforces that checking be performed at compile time, meaning that

overly dynamic features supported by TypeScript are removed, such as the any type [5], though

generic types and nullable class and function types are still supported [6]. The types that are
included also differ from those of TypeScript, to reflect the set of types available in

WebAssembly—for instance, rather than having numbers be represented by the number or

bigint types as in JavaScript and TypeScript, AssemblyScript uses a set of float and integer

types with varying precisions in order to more closely reflect the types used by WebAssembly
[6].

Not all features of AssemblyScript are limited to those natively built into WebAssembly
however. A significant example of this is garbage collection. Most implementations of
WebAssembly do not have garbage collection [7], instead requiring explicit instructions to clear
memory. AssemblyScript provides its own garbage collection, with its default compilation
settings adding a runtime to the compiled code which automatically performs incremental
garbage collection [8][9]. However, there are other similar features, such as iterators,

for...of loops, and closures, which would be possible to support in AssemblyScript but

which are omitted as the developers plan to rely on further additions to WebAssembly in order to
implement them more efficiently. The current lack of these features makes the task of adapting
to AssemblyScript more difficult—both in preventing the direct reuse of existing code and in
requiring programmers to learn new techniques and design patterns to work around the use of
these features.

We introduce an extension [10] to the AssemblyScript compiler which allows one to write
AssemblyScript code using closures and iterators by first transforming it via source-to-source
compilation into behaviorally identical code which is compatible with the existing compiler. This
enables programmers to write code which more closely matches the capabilities of TypeScript

while maintaining the performance benefits of AssemblyScript.

1.2. Motivation

Web applications hold an ever-increasing importance in our ultra-connected modern
world, and as uses for them increase so does the importance of being able to make software

high-performance even when running it through a browser. The already widespread support of

WebAssembly contributes significantly to making such efficient web software possible, however
the task of actually utilizing the potential efficiency that it allows for is still likely to be difficult for
many web programmers. Due to the intricacy and precision needed to write WebAssembly
code, various compilers exist to allow code to be written in higher level languages while still
resulting in generally efficient WebAssembly code, analogously to how code is compiled into
traditional assembly languages. For example, Emscripten compiles C and C++ into
WebAssembly [11], and wasm-pack compiles Rust into WebAssembly [12]. Since the use of
JavaScript is so prevalent in web programming (both for in-browser code and for back-ends
using runtimes such as Node.js), many web programmers are likely far more experienced with
JavaScript than with languages which are traditionally intended for static compilation—so even
though compilers into WebAssembly exist from other languages, a web developer may still have
difficulty making use of them as they may be unfamiliar with those languages. By compiling from
a syntax much more familiar to most web programmers, AssemblyScript enables the avoidance
of much of this difficulty, but its lack of some features common in ordinary JavaScript means that
adapting code and techniques that use these features is still a challenge. Hence there is
significant motivation for the expansion of AssemblyScript's capabilities in order to both better
support the direct adaptation of existing code with minimal modifications, and in order to enable
web developers to use a wider suite of design patterns while still gaining the potential

performance benefits of AssemblyScript.

2. Background

Two commonly used concepts in JavaScript which are unsupported by AssemblyScript
are closures and iterators. Closures are functions which store references to the state
surrounding their declaration. This means one can create functions which are dependent on and
affect the value of variables that were accessible in that state. For example, local variables
declared within a function can be used by another function which is nested inside that function.
Then since the state is bundled with the function in a closure, this inner function can continue to
reference those variables even when being called from a scope that is no longer able to access
those local variables.

Iterators are a design pattern which is used to provide a unified way to sequentially
access elements within an object without requiring the code accessing it to be dependent on the
object’s underlying representation [13]. The exact details of the syntax and implementation differ
across languages, but generally this involves the use of methods which, each time they are
called, provide the next element in some sequence, meaning that all of the elements of a
sequence can be accessed by repeatedly calling such a method. In languages like JavaScript,
these methods are part of an object which is returned by a method of the data structure that one
is iterating over.

The task of compiling closure-based code into WebAssembly has been previously
considered in Chris Rybicki’'s Honors Thesis Compiling from a Typed Dialect of Scheme to
WebAssembly [14], which details compilation from a dialect of Scheme, which includes closures
as a feature, into WebAssembly. Rybicki’s approach for supporting closures involves
transforming lambda expressions (which are used to declare functions in Scheme) such that
there are no free variables within their bodies, then extracting those expressions to the top-level
and treating them like global functions. In order to do so, he adds a parameter representing the

environment to the parameter list of each lambda, then makes all the free variables instead

reference that parameter, then modifies all any application of these lambda expressions to
include the relevant environment as an argument. He also adds existential types, which are
given to environments that get passed into lambda expressions, in order to hide the internal
representation of the environment from the code calling the lambda and to ensure only the
matching environment is able to be passed into a particular lambda. Tuples containing a lambda
and its environment are each “packed” into an existential type, which is then “unpacked” at the
invocation, where “pack” and “unpack” are expressions introduced here to substitute out lambda
expressions while checking for type. After closures have been converted as such, the compiler
performs the aforementioned extraction, moving their definitions to be done in the top-level
(globally) and replacing them with identifiers to the new globally scoped functions. These
changes all occur before the program is actually transformed into WebAssembly code, instead
restructuring the Scheme code itself into a form which can be more easily converted into
WebAssembly in the later stages of the compilation process, so that it can be handled just as
any code not using closures would.

Since AssemblyScript can already compile code not using closures, its compiler can be
leveraged to allow for the functionality of closures through performing similar transformations
before the compilation occurs. However, unlike Rybicki’'s dialect of Scheme, the language itself
was not built with such restructuring in mind, meaning that the transformation needs to rely on
the already existing syntax for objects and methods, rather than being able to add additional
types of expression.

The general concept of iterators is implemented in various different ways depending on
the language, such as using objects or higher order functions. Some languages allow for
iterators to use structured coroutines which yield the iterated values; this makes the process of
writing code to define an iterator more convenient (as one does not need to account as much for
keeping track of the pausing and restarting of the iteration) but has some limitations, particularly

that it prevents the modification of the collection that one is iterating over during iteration, as one

could with something like Java’s iterators’ remove operation, which removes the prior element
reached in the iteration [15].

Jacobs et al. [13] demonstrated an approach to how C# code using iterators (including
iterators nested within other iterators) could be transformed into identical code not dependent on
the language having a built-in implementation of those features. This involves creating classes
for each generator declaration such that the class has properties storing the current state of the

iteration, where each state represents the most recently reached yield statementin the
original code. Each time the .next () method is called it would then execute the original code
until it reaches what would have been a yield statement, at which point it updates the
state-tracking properties and returns an TteratorResult object. Since JavaScript's protocol
for iterators does not require the implementation of any features besides calling .next (), it

lacks difficulties such as the additional methods present in the more complicated iterators of
other languages like Java.

Existing approaches to supporting similar features in languages which compile to
WebAssembly have involved implementing extensions to the WebAssembly runtime, as
demonstrated in the work of Pinckney et al. on Wasm/k [16] and developed further upon by
Phipps-Costin et al. in their WasmFX [17]. Both introduce additional control flow features in the
form of delimited continuations, which encapsulate a section of remaining computation and can
be suspended and resumed in order to allow for non-local transfers of control. This allows
compilers into WebAssembly to more directly represent features such as asynchronous
functions and generators which are present in many high-level source languages [17]. These
features can be supported by compilers using only existing WebAssembly features, but this
generally results in complex and inefficient code. The WebAssembly runtime itself being

modified to better support them allows for code with significant reductions in running time and

file size—with code size being an especially important feature for web environments, which
need to be able to download code on demand [16].

While these approaches provide performance advantages over those which rely on the
existing features of WebAssembly, as is done in the approach we demonstrate, they are limited
in their immediate utility as they are dependent on engines implementing those features. Given
WebAssembly’s goal of targeting a broad array of platforms both on and off the web [18], wide
support is hugely desirable. However, if similar extensions become widely implemented within
WebAssembly engines, then future work could allow AssemblyScript to take advantage of them
to improve performance and implement features such as asynchronous generators [19] which

would not otherwise be viable.

3. Methodology

3.1. Closures

3.1.1. Closures in JavaScript

A closure is a function which stores values from the context in which it was created. In

ordinary JavaScript, every function declaration results in a closure. If one needs to access a

variable from the bundled state inside the body of a function, one can simply use its identifier as

one would when referencing a variable in any other context. For example, a function that returns

a closure which returns a number that is incremented by one each time it is called could be

created as such:

export function (from) {
return function () {
return ++from;

This being an example of a closure as the returned function keeps a reference to the

environment of the passed-in “from” value.

3.1.2. Limitations of AssemblyScript and its Compiler

AssemblyScript does not support the capturing of local variables. The AssemblyScript
documentation states that the intent is to wait for WebAssembly engines to support built-in

garbage collection and typed function references before officially supporting closures.

10

Currently, the AssemblyScript compiler restructures functions during compilation so that
the resulting WebAssembly has each function declared in the global scope. Take for example

the following code which contains nested functions that do not depend on capturing scope:

export function outside(): 132 {
function inside(): 132 {
return 1;

}

return inside () ;

This compiles in part to:

(export "outside" (func $code/index/outside))
(export "memory" (memory $0))
(func $code/index/outside~inside (result i32)
i32.const 1

)

(func $code/index/outside (result i32)

This results in the two functions created separately, each with their own local scope. This
means that each function only has access to values that are either passed in as arguments,

initialized within the body of the function, or in the global scope.

3.1.3. Transformation of Scopes

The AssemblyScript compiler provides hooks which can be used to intercept and modify
the compilation process. We use a hook after parsing to access the abstract syntax tree, which
is a tree of objects representing the structuring of the elements that make up the parsed code.
From this tree, we identify every function that references non-global variables declared outside
of that function. These functions are the closures to be transformed, and the scope in which

each of these variables was declared is the environment to be captured with that closure.

11

Once our extension identifies a scope that needs to be captured, it creates a class

representing that scope call to that class’s constructor. The class declaration is placed at the

start of the file, as AssemblyScript only allows classes in the global scope.

3.1.3.1. Statements and Function Calls

For non-function blocks, the original contents of the block are moved into the constructor

method of the class, and a call to the constructor is made in the original location of the block.

If a block is originally:

Statements

It is transformed into:

class scopeClass {
constructor () {
statements

}

new scopeClass () ;

Each function that is transformed into a class has its body moved into a method of that

class, called . func. This method takes the same arguments and has the same return type as

the original function declaration.

Statements

function name (param0:type0, paraml :typel,

paramN : typeN) :returnType {

Becomes:

12

class nameClass {
constructor () {

}
func (param0:type0, paraml :typel, paramN : typeN) :returnType {
Statements

}

let name = new nameClass () ;

Each call to the function in the original code is replaced with a call to the method stored

in the object corresponding to that function, by affixing .func to that call.

name (param(, paraml, paramN)

Is transformed into:

name . func (param0, paraml, paramN)

3.1.3.2. Block-scoped Variables

Each variable declared within the original scope will become a public property of the

class, with the same type and name as the original variable.

let name:type;

class scopeClass {
public name:type;

13

Declarations and assignments of variables which have had properties made for them are

both transformed into assignments of the created property:

let namel = valuel, name2 = value2, nameN = valueN;

this.namel = valuel, this.name2 = value2, this.nameN = valueN;

Functions that access variables declared in a non-global scope besides their own need
to be able to access and modify those variables even after the function is initially declared. In
order to do so, their constructor takes in the object that was created to represent the scope in

which the function is being created and stores it as a property of the new object.

class innerScopeClass {
public parent: outerScopeClass;
constructor (parent: outerScopeClass) {
this.parent = parent;

This allows for a linked list structure, in which the passed-in scope acts as a parent to
the new object, meaning that variables which are in a further out scope can be accessed
through accessing the parent of each scope.

Each time a variable from one of the transformed scopes is accessed, the identifier

being used is prefixed with “this.” followed by zero or more repetitions of “parent.”,

14

equivalent in count to how many scopes out the declaration is from the current expression. For

example, given this code which declares a function within two outer blocks:

let variablel = valuel;

let variable? = value?2;

function name () :returnType{
variablel
variable2

We obtain class declaration for the function as follows:

class nameClass {
public parent: scopeClass;

constructor (parent: scopeClass) {
this.parent = parent;
}
func () sreturnType {
this.parent.parent.variablel
this.parent.variable?

3.1.3.3. Exported Functions

Translated functions that were originally used in export declarations need to be

transformed into functions with the same names, arguments, and types as the original functions,

15

along with having classes created to represent them. This is necessary as exported functions
may be accessed by code which has not been run through the compiler, and thus we cannot
depend on being able to modify the code which imports the function.

For a function that is originally exported:

export function name (arguments) :returnlype {

Statements

The class will be created in the same manner as any other translated function. The
resulting function makes a call to the constructor that was created for the corresponding class,

then returns the results of a call to the constructed object’s . func method which passes in the

same arguments as are passed into this new function.

class name class {
constructor () {
}

func (arguments) :returnType {

Statements
}
}
export function name (arguments) : returnlype {
return (new name_class ()) .func (arguments) ;

3.2. lterable Objects

3.2.1. lterators in JavaScript

In JavaScript and TypeScript, iterators are used within various built-in functions and
statements. Often JavaScript code will employ the functionality of iterators without making any

direct reference to them. For example, for. . .of statements provide the ability to make loops

16

which are repeated for each element contained within a data structure [20]. In order to access
these elements, the statement uses an iterator given by a method of the object for that data
structure. Many built-in classes provide these methods automatically [21], allowing for example

to use a loop to access each member of an array:

let array = [1,2,3,4]1;
for (let n of array) {
Console,log(n); //prints \\l// \\2// \\3// \\4//

This allows for more succinct loop syntax than would be necessary for conventional a

conventional for loop stepping through an array:

for (let i = 0; 1 < array.length; ++i) {
console.log(array[i])

Additionally it allows for loops to be written more generically, so that they can be used

for other objects without changes in syntax. For example, the same loop can be used with a

string, as it also has a built-in iterator method:

let str = "ABCD";
for (let n of str) {
console.log(n); //prints “A” “B” “C” “D”

This can be done with any object as long as that object is made following JavaScript’s
iterable protocol [22]. Following this protocol, an iterable object is any object which has a
method whose key is the value of the built-in constant Symbol.iterator. Symbols are a
primitive type in JavaScript which are guaranteed to be unique upon creation. In order to
prevent an overlap between the names that a programmer may want to use for custom methods

and properties of an object and the keys used by operations built into JavaScript, certain

17

“well-known” Symbols are kept constant and are accessible as static properties of the global

Symbol object. Any function or statement which accesses the iterator of an object does so by

calling whatever method is stored within the property of that object which has the key

Symbol.iterator

This method should return an iterator, which is an object which has a next () method,
which returns an IteratorResult object. IteratorResult objects have the properties done and
value. done is a boolean, which has the value t rue if the iterator has completed the
sequence of its iteration, and is false (or absent) otherwise. value whatever is returned by
the iterator, generally the elements of the object being iterated over. value can also be absent

in the case that done is true.

3.2.2. Limitations of AssemblyScript and its Parser

In AssemblyScript, objects must have specified types, meaning that they must be made
using the constructor function of a class. Because of this, JavaScript’'s object initializer syntax
(e.9. let object = {key:value})and Object.create () static method both cannot be
used. To create an iterable object in AssemblyScript code, one would thus need to create three
new class declarations: one for the iterable, one for the iterator which is returned by a method of
the iterable, and one for the IteratorResult objects returned by the iterator.

The exact contents of the block depend on the purpose and internal structure of the

class which is being made iterable, but a general outline of the necessary steps are as follows:

class iterableClass {
[Symbol.iterator] () {

return new iferator (this) ;

}

class iterator {
public iterableObject: iterableClass;

18

constructor (iterableObject :iterable) {
this.iterableObject = iterableObject;

}
next () {

iteratorResult

return new iteratorResult (value, done) ;

}
class iteratorResult {
public value: #pe;
public done: bool;
constructor (value: f#ype, done: bool) {
this.value = value;
this.done = done;

In AssemblyScript however, the programmer is unable to declare the iterable class in a
way that follows the JavaScript specification, as one cannot use the constant
Symbol.iterator as akey. To use a Symbol as a key, one must use the computed property
name syntax [23], where square brackets are wrapped around the expression representing the
key, as shown in iterableClass in the above code. While AssemblyScript has the Symbol data
type and one can access the Symbols corresponding to global keys such as that of
Symbol.iterator, AssemblyScript's parser does not support the computed property name
syntax, preventing the use of Symbols and other non-identifier names as keys.

Besides the inability to use Symbols as keys, all of the functionality in the above code
works in AssemblyScript. Hence one can make such code compilable if it is first transformed

such that the iterable uses an identifier as the key, rather than a Symbol.

class iterableClass {
constructor () | }
iteratorldentifier () {

return new iterator (this) ;

19

iterator iteratorResult

Since using a non-identifier as a key raises an error during parsing, rather than in the
compilation done after the parse is complete, one cannot use any of the hooks provided by the

frontend of the AssemblyScript compiler, as they are all called after parsing.

3.2.3. Transformation of Declaration and Creation of Iterators

Since the hooks cannot be used, transformations are done before the code is passed
into the parser. The text of the source code is first read to find any class body in which
[Symbol.iterator] appears in the declarations. Each bracketed key expression is then
replaced with an ordinary identifier.

This change causes a class declaration as shown below:

class iterable {
constructor () | }
[Symbol.iterator] () {

Statements

To instead become:

class iterable {
constructor () | }
iteratorldentifier () {

Statements

20

By default iteratoridentifier is set to Symbol iterator, however if the parse finds that
sequence of characters to already exist within the code, it will prefix it with underscores until it
becomes a unique sequence.

The same identifier is then used to replace any calls to the now-modified iterator method.

Following the transformation shown above, an expression which initially reads:

iterableObject [Symbol .iterator] ()

Would then be transformed into:

iterableObject . iteratorldentifier ()

3.3. for...of Loops

3.3.1. for...of Loops in JavaScript

for...of statements are a common way to make use of iterators in JavaScript, without

requiring the programmer to manually access the iterator and its results’ properties. A

for...of statement has syntax as follows [20]:

for (variable of iterable)

Statement

When the for. . .of statementis run, it calls the Symbol.iterator method of
iterable and then calls the next () method of the returned iterator. It assigns the value from
the returned object to variable, then runs statement. It repeats this calling of next and execution
of the statements until the next () method returns an object with a t rue value for the done
property. The loop can also be ended with break or return statements or thrown errors, just

as one can for an ordinary for loop or while loop.

21

3.3.2. Transformation of for...of Loops

To make the general form shown above into an ordinary for loop as supported by

AssemblyScript’'s compiler, the iterator method needs to be explicitly called, and the returned

iterator needs to be stored and have its .next () method called with each iteration until its
result has a true value in its done boolean, with the variable being assigned to equal each
result's value property.

The results of the transformation are dependent on the form of the variable expression in
the original for. . .of statement. In JavaScript’'s syntax for this statement, variable can be
either a declaration using any of const, var, or let, or a previously declared variable or
property [20].

Given a for. . .of loop which uses a declaration for variable:

for (declarationKeyword variableName of iterable)

Statement

The transformation modifies it as follows:

for (declarationKeyword iterator = iterable.Symbol iterator (),
result = iterator.next (),
variableName = result.value;

' result.done;
result = iterator.next (), variableName = result.value)

Statement

variableName, iterable, and statement are unchanged from the original code, and iterator

and result are newly created identifiers. The new identifiers default to the names iterator and
result, but if these names are already in use then they are prefixed with underscores until

becoming ones that are not.

22

If declarationKeyword is 1et or var, it is kept the same as the original: a for. . .of loop
using let results in a for loop using 1et and a loop using var results in a loop using var.

let and const declarations both use block scoping, differing only in that variables
created with 1et can be reassigned while constants created with const cannot. Because of
this, a constant created by const will behave identically to a variable created by 1et that never
has an assignment operation applied to it. Thus any code which uses const and is syntactically
valid can be made into equivalent code that uses let.

Though a for. . .of statement stores different values with the same identifier

variableName across different iterations of the loop, this is not considered a reassignment as
each iteration counts as a separate scope, with the variable being newly declared each time.

This means that a const may be used as long as the identifier is not reassigned within

Statement.

In a for loop, though a new scope is made with each iteration similarlytoa for...of
loop, the values stored in the 1et-declared variables in this scope are initialized to be the same

as in the previous iteration and must separately be assigned if one wants them to be updated to

new values. In the transformed for loop shown above, reassignments are done to both result

and variableName at the end of each loop iteration. This means that the transformed loop may

not use const in its initialization. However, since 1et and const behave identically for any
syntactically valid code, 1et can be used here instead. The transformation thus handles const
declarations in the original for. . .of loops as if they were 1et, replacing declarationKeyword
with Let in the resulting transformation.

Unlike the declaration cases described above, for. . .of loops which reference an

existing variable lack declarationKeyword:

23

for (variableName of iterable)

Statement

This means that in order for the values of iterator, result, and variableName to be assigned
within the same initialization expression, iterator and result need to be already declared before

the loop begins. The transformation thus adds a 1et statement declaring both of them before

the for statement, and does not include any declarations in the loop initializer:

let iterator, result;
for (iterator = iterable.Symbol iterator(),
result = iterator.next (),
variableName = result.value;
Vresult . done;
result = iterator.next (), variableName = result.value)

Statement

24

4. Results

Since existing AssemblyScript code does not utilize these features, benchmarks were
created specifically to make use of them. For each benchmark, code was written that would be
translated by our extension into ordinary AssemblyScript then compiled into WebAssembly. A
TypeScript counterpart was made for each with minimal changes in code structure: types not
present in TypeScript (e.g. 132, £64) were changed into their TypeScript counterparts (e.g.
number), and unchecked () annotations (which are used in AssemblyScript to perform faster
array access when indices are already known to be within bounds) were removed. The running
time of each benchmark was measured using JavaScript's performance.mark () and
performance.measure () methods, with code running in a cross-origin isolated webpage
allowing for a minimum resolution of 5 microseconds [24]. For examples of the code used in

each benchmark, see the appendix in section 7.

4.1. Closures

4.1.1. Correctness Testing

Correctness of the transformation was evaluated through the equivalence of the outputs
of transformed programs using each of the extension’s features with the same programs in
TypeScript. Since our objective was to bring functionality from closures as they are supported in
TypeScript into AssemblyScript, using the features must produce identical results in both
languages. Our implementation of closures needs to properly handle functions which are
declared within non-global scopes, regardless of the kind of enclosing block: i £ statements,

else clauses, while loops, for loops (including when an inner function is dependent on the

for loop’s initialization; for. . .of loops don’t need to be handled separately as they are

25

converted into standard for loops in the other part of our transformation), do. . . while loops
and other function bodies. Additionally, converted function bodies need to work for variables
passed in as arguments as well as those declared within them.

A set of functions was made which each used different features of the closure
transformations. This was repeated with each kind of enclosing scope, to ensure each behaves
properly. This code was made to compile in both TypeScript and our extended AssemblyScript,

with two versions that only differed in the types used: £64 for AssemblyScript and number for

TypeScript. The results were then checked for equality.

let alpha: 132 = 1;
function basicClosure(): 132 {
return alpha;

let beta: 132 = 1;

function changingValueClosure(): 132 {
beta++;
return beta;

let gamma: i32 = 3;
function twoLayerClosure(): 132 {
function innerClosure(): 132 {
return gamma;

}

return innerClosure() ;

26

let epsilon: i32 = 6;
function sameValueA(): 132 {
epsilon++;
return epsilon;
}
function sameValueB(): i32 {
epsilon *= 2;
return epsilon;

let delta: i32 = 5;
function returningTwoLayerClosure(): ()=>i32 {
function innerClosure(): 132 {
return delta;

}

return innerClosure;

function returningStoringParameters (x:i32): () => i32 {
function innerClosure(): 132 {
return x;
}

return innerClosure;

All tests performed produced identical results in TypeScript as in our extended

AssemblyScript.

4 .1.2. Performance Metrics

Performance benefits were seen in cases involving the repeated use of a set of
calculations. For example, taking advantage of the built-in math libraries, one can make a
closure that performs a logarithm using a specified base without needing to recalculate the

denominator each time:

27

function setBase (base: f64) {
const denominator: f64 = 1 / Math.log(base);
function logBase(x: f64): f64 {
return Math.log(x) * denominator;
}

return logBase;

Since the returned 1ogBase function is dependent on the value of the denominator from
the scope of the outer setBase function, it is transformed by our extension before the main
compilation occurs. Just as with closures in ordinary JavaScript, the setBase function can be

called several times with each returned closure having a separately stored value for its

denominator. Similar behavior can be created without the need for closures, e.g. by storing
the calculated Math.log (base) values in an array, but the ability to directly store those values

with the functions allows for code to be created more flexibly and concisely.

The resulting transformed code for this closure was compared in performance to two
approaches not using closures: one being shorter code which naively performs the logarithm on
the base each time, while another stores the reciprocal of the values in an array. Using these
approaches, we ran logarithms and exponentiation with an input array of bases on the first
10,000,000 natural numbers. These were compiled into WebAssembly and compared in running
time against direct conversions of the same code into ordinary TypeScript which was compiled
into JavaScript.

All three of the AssemblyScript approaches ran substantially faster than TypeScript, as
one would expect given the performance advantages of WebAssembly in the operations
relevant to these trials. The transformed closure and value storing methods were the fastest,
each having an average running time of 1330 milliseconds. The approach which does not store
the denominators took 19% longer than the transformed closures on average, while all three of

the TypeScript versions were significantly slower: the fastest, storing the denominators without

28

taking advantage of closures, took 121% longer than the fastest AssemblyScript method.
TypeScript using the closure approach performed slightly worse, taking 122% longer than the
same approach in AssemblyScript, with the non-storing approach again performing the worst of
the three.

Figure 1: Benchmark: Closures of logarithms with varying bases

3000
2500
m
E
o 2000
£
|_
(o)}
C
IS
S 1500
o
e
©
(]
=
1000
500 A
0 -
AS with closure AS storing AS naive usage TS with TS storing TS naive usage
extension denominators without closures closures denominators without closures
without closures without closures
Benchmark type Mean Time (ms) [Sample Standard Deviation
AssemblyScript with closure extension 1330 21
AS storing denominators without closures 1330 22
AS naive usage without closures 1580 18
TypeScript with closures 2950 50.
TS storing denominators without closures 2940 52
TS naive usage without closures 3120 58

29

Since the closure-transforming version appeared to have no speed disadvantage as
compared to the other AssemblyScript approaches—in fact being the fastest by a narrow
margin—the overhead added by the additional constructor and method calls made by the
transformation appears to be negligible. Alongside the fact many calculation-heavy behaviors
can be performed more efficiently through code compiled using AssemblyScript, this means that
we can take advantage of the utility of closures at the same time as improving performance.

Performance advantages were also seen in benchmarks testing the storing of functions
alongside variables that are modified with each call. In these benchmarks, an array is filled with
various functions that take two floats as arguments. A closure is then made for each of these
functions. Each closure takes one float and passes it in as the first argument of the stored
function, with the second argument being a variable that is incremented each time the closure is

called.

function makeIncrementY (f: (x:£f64,y:f64)=>f64, y:f64): (x:f64)=>f64 {
function incrY(x:f64) :f64
return f(x,y++);

}

return incrY;

The benchmark then calls each of the closures repeatedly and returns an output made
by passing the result of each function into the next. This code was then modified to replicate the
same behavior without relying on closures. Four variations were made, with differing amounts of
adherence to the structure of the original closure-based version of the function. These functions
were all then ported into TypeScript with minimal modifications to account for the differing types

and default libraries.

30

Figure 2: Benchmark: Closures storing varying functions and incrementing variables

700 1
600 -
500 -
3
()
£ 400 -
|_
2
C
5
&€ 300
C
]
=
200 -
100 -
0 .

AS with closure extension AS without closures TS with closures TS without closures
Benchmark type Mean Time (ms) | Sample Standard Deviation
AssemblyScript with closure extension 235 71
AS without closures version 1 601 10.
AS without closures version 2 600 7.3
AS without closures version 3 399 11
AS without closures version 4 398 10.
TypeScript with closures 612 62
TS without closures version 1 400. 29
TS without closures version 2 315 22
TS without closures version 3 389 38
TS without closures version 4 385 26

31

The AssemblyScript code which used transformed closures ran substantially faster than
the same code ported into TypeScript, with the TypeScript version taking 612 milliseconds,
160% longer than the 235 milliseconds of the AssemblyScript version.

As well as being more complicated to write, the non-closure AssemblyScript versions
had slower performance—the fastest of them still on average took 69% longer than the closure
version. In fact they all performed worse than most of their TypeScript counterparts—the second
fastest of the benchmarked functions was one of the non-closure functions run in TypeScript,
which took only 34% longer than the AssemblyScript with transformed closures.

Since our extension’s translation results in ordinary AssemblyScript, such fast
performance must be obtainable without using the extension. The implementations without
closures kept numbers and functions in separate arrays, but all performed worse than the
transformation closures. This suggests that the performance differences may be due to a
difference in memory layout. The transformed closures result in a single array storing objects
which contain the values of each function and its related number together, while having
separate arrays requires disparate locations in memory to be accessed each time. As the
performance difference appears to be tied to this multi-array approach, the creation of a class to
store functions paired with numbers may be necessary for optimal performance in this
benchmark. Our extension creates this class automatically and allows for terser and simpler
code than one would have by manually creating this class. Hence the extension allows for code
to be competitive in performance while remaining simpler to read and write than other
equivalent code.

This also illustrates that the scenarios in which translated closures result in performance
benefits in AssemblyScript are not necessarily the same as scenarios where closures are

optimal in TypeScript and JavaScript. While the approach using translated closures was the

32

fastest of the AssemblyScript tests, the equivalent code in TypeScript ran the slowest of all the

tests.

4 .1.3. Limitations

While the objects we create from closures can be passed as arguments into functions,
transformation of the called function is necessary. Since closures are transformed into objects
that cannot be directly invoked as functions, instead having methods containing their original
function body, any attempt to invoke a closure that has been passed in as an argument must be

replaced with a call to the . func method of that argument. AssemblyScript code which passes

an object’s method directly into another function fails at runtime due to the mismatch in types

caused by the argument type including the “this” context. In order to keep access to the

proper context, the entire object must be passed into the function, with the invocations within
that function being modified to call the method. Similarly, the called function must have the types
of its parameters modified in order to match the class made for the closure being passed in.
Within the code being transformed, we are able to perform both of these changes.
Expressions being invoked without a call signature are identified by the extension and have
. func added. Similarly, assignment of values to variables which differ in type are identified at
compile time, and the type signatures are replaced. However, in order to ensure that only the
relevant types are changed, the extension currently requires them to be explicitly annotated in
the code (see Appendix 7.2.1 for an example of such).
Contrastingly, these changes cannot be performed on functions from other sources,
particularly those from the built-in library of AssemblyScript or those imported from a separate
file. This means that the closures we transform cannot be used with built-in methods such as an

array’s .map or .forEach function.

33

Additionally, since the extension produces a separate class for each transformed
function declaration, parameters and variables cannot have the same type as several different
closures. This means that all closures being stored in the same variable or passed into the
same function must be created from the same original function—they can differ in stored
environment, such as when a closure returned by a function varies with the value of the outside

function’s arguments, but not in the contained function body.

4.2. Iterators

4.2.1. Correctness Testing

As with closures, the correctness of the transformation of iterators was evaluated
through the creation of programs which were made to use the features in both TypeScript and

our extended AssemblyScript. This includes class declarations with [Symbol.iterator]
methods, calls to the methods of objects from those classes, and for. . .of loops utilizing

those classes. Classes can only be declared in the global scope in AssemblyScript, while
method calls and for. . .of loops are able to be used in any scope and hence have their tests
repeated for each potential scope. Additionally, the testing of for. . .of loops is repeated for
each possible variable syntax: const, let, and var declarations as well as previously declared
variables and properties.

For these tests, the following classes were made to act as an example implementation of

the iterator protocol. The NaturalGeneratorIterable class here has an iterator which

returns natural numbers from 0 to a max value that is passed in as an argument.

class NaturalGeneratorIterable {
max: 132;
constructor (max: 132) {
this.max = max;

34

}
[Symbol.iterator] () : NaturalGeneratorIterator
return new NaturalGeneratorIterator (this);

}
class NaturalGeneratorIterator {
source: NaturalGeneratorIterable;
value: 132;
constructor (source: NaturalGeneratorIterable) {

this.source = source;
this.value = 0;

}

next () : IteratorResult<i32> {

if (this.value > this.source.max) {
return new IteratorResult<i32> (true, 0);
} else {
return new IteratorResult<i32>(false, this.value++);

}
[Symbol.iterator] () : NaturalGeneratorIterator ({
return this;

}
class IteratorResult<T> {
done: boolean;
value: T;
constructor (done: boolean, value: T) {
this.done = done;
this.value = value;

This class’s iterator was used manually, making calls directly to [Symbol.iterator]

and the returned object’s methods:

35

let manuallterable = new NaturalGeneratorIterableSimple (2);
let manuallterator = manuallterable[Symbol.iterator] ()

let resultl = manuallterator.next();

resultl.value.toString() + " "; // O

resultl.done.toString() + " "; // false; iteration incomplete
manualIterator.next ().value.toString(); //1

let result3 = manuallterator.next ();

result3.value.toString() + " "; // 2

result3.done.toString() + " "; // true; iteration complete

As well as in for loops, both as an iterable stored in a variable to be used with several

for loops and as an object declared within the head of the loop:

let storedIterablel = new NaturalGeneratorIterableSimple (3);
//iterating over a class stored in a variable
for (let 1 of storedIterablel) {

i.toString() + " "; // M1 2 3 7”

//iterating again over an already-iterated-over iterable
for (let i1 of storedIterablel) {
i.toString() + " "; // 1 2 3”7

//iterating over a newly created iterable
for (let i of new NaturalGeneratorIterableSimple (4)) {
i.toString() + "™ "; // N1 2 3 4 "

These loops were repeated with each of the possible assignment targets listed above,

and both the loops and manual iterations were repeated in different kinds of scope as was done

for the closures (i £ statements, else clauses, while loops, for loops, do. ..while loops

and function bodies). Each produced identical results when compiled in TypeScript (using the

number type) as in our extended AssemblyScript (using the 132 type).

36

4.2.2. Performance Metrics

Translation of iterators does not appear to have direct performance advantages, but it is
still valuable for permitting easier code writing. Once an iterable type has been made, later code
can loop through the iterable’s elements without the need to rewrite any logic particular to that

type. Similarly, once a for. . .of loop has been written making use of one iterable type, it can

be easily adapted to support any other iterable type without necessitating any change in the
structure of the loop.

Due to the overhead involved in the additional objects being created, code making heavy
use of iterators may perform slower than using an alternative approach natively supported by
AssemblyScript. However, this does not mean that all use cases of transformed iterators will be

inherently non-performant. Particularly, in cases where a for. . .of loop is used as the

outermost layer of a set of nested loops, the translated code appears to have equal or
marginally faster speed than similar code which does not use iterators.

For example, one benchmark stores an array of 500 floats and loops through them,
using each float as a base for logarithms and exponents. Since AssemblyScript's Array class
lacks the built-in iterator method that its TypeScript equivalent has, the array is stored inside a
separately declared object which has an iterator that returns each member of the stored array.

Both when using a for. . .of loop with an iterator and when using a standard for loop
with an incrementing index, AssemblyScript performed significantly faster than the TypeScript
counterparts of the same code. Within the TypeScript code, no significant performance
difference appeared between using a separate iterable class as was done in the AssemblyScript

code and using the built-in iterator of the Array class.

37

Figure 3: Benchmark: Iteration over array of bases for logarithms and exponents

175 A

150 -

é 125 -
()]
£
|_

2100
[
c
&
[

S 751
s

50

25

0 -

AS custom iterator AS without iterator TS custom iterator TS default iterator TS without iterator
Benchmark type Mean Time (ms) | Sample Standard Deviation
AssemblyScript custom iterator 86 2.6
AssemblyScript without iterator 87 3.4
TypeScript custom iterator 180. 44
TypeScript default iterator 181 6.3
TypeScript without iterator 179 3.7

Since this code’s performance does not appear to be detrimentally affected by the added

iterator, the performance benefits of AssemblyScript can be taken advantage of while enabling

structural possibilities that are normally unavailable in AssemblyScript.

38

Figure 4. Benchmark: Iteration over array nested with incrementation loop, with varying loop
nesting and number of iterations

No iterator; Iterator; No iterator; Iterator;
array outside

6000 - array outside —

- array inside

array inside

5000 A

4000 A

3000 A

Mean Running Time (ms)

2000 A

1000 A

Array Length: 2.5%x107 5x10° 5x10° 5x10% 5x%103 5x102 5x10 5 1
Increment Count: 1 5 5x10 5x102 5x103 5x104 5x10° 5x10¢ 2.5%107

Whether such performance is attainable is dependent on the structure of the code and
the number of elements being iterated over. The transformed iterators appear to suffer in
performance when large numbers of iterators are being created—such as when for...of
loops are nested within other loops, as overhead is introduced by the additional method calls
and object creation.

Even when a single iterator is used, performance can begin to suffer when enough
iterations are being performed. In benchmarking varying lengths of array iterations, arrays with
up to 50,000 elements had negligible differences in performance between iterators and
traditional for loops. Significant differences appear when iterating over 500,000 elements, with
an 19% longer running time for the transformed iterator compared to an incrementing for loop,

though this is still a relatively minor disadvantage, with the mean running times being less than

39

two sample standard deviations apart from each other. Further increasing the length to
5,000,000 elements caused more drastic disparity, with iterators taking about 140% longer than

a traditional for loop. These differences only appearing with large numbers of elements

suggests that they are potentially related to the allocation of memory—when iterating over so
many elements, the IreratorResult objects being created may not all be being removed from
memory immediately, causing fewer spaces in memory to be available and introducing
additional overhead. On the hardware used for benchmarking, this degradation of performance
occurred even with the maximum possible memory (2*16 pages of 64KiB each [25]) being
initially allocated to the WebAssembly runtime. Supposing that the performance limitations are
connected to memory, this may suggest that the problems occurring have more to do with the
layout of the memory and the speed at which the system can access different regions of
memory rather than solely to the amount of space available. One may be able to obtain better
performance in the same benchmark through other changes in compilation options, such as by
adding manual invocations of the garbage collector to clear memory before it becomes
necessary to reallocate it [9], or it may be influenced by limiting factors of the particular
hardware used.

The exact performance details may differ with each iterable class, but for arrays this
suggests that transformed iterators and for. . . of loops may be used without damaging
performance when less than hundreds of thousands of elements are being iterated over. When
iterating over hundreds of thousands of elements, the performance may begin to suffer in
comparison to using standard for loops. However, as the effects are not necessarily immense,
using iterators may still be preferable if prioritizing the kind of code flexibility enabled by them.
Beyond that range, dealing with millions of elements, the detrimental effect on performance will

likely outweigh the benefits of the enabled structures.

40

4.2.2. Limitations

Since AssemblyScript lacks native support for iterators, its built-in classes do not provide
any iterators by default. This thus necessitates the creation of one's own classes and methods
in order to utilize the features of our extension. For example, in TypeScript and JavaScript,
arrays are iterable by default, while with this extension one needs to write a wrapper class with

its own Symbol.iterator method in order to use themin for. . .of loops. This reduces the

initial convenience enabled by supporting iterables, however there are still benefits when
several iterations are being performed. Once an iterator method is written for a class it can be
reused for any other objects of that class, and iterators even of different types can be
interchanged while using the same loop structure.

While the lack of default iterator methods does make code more complicated to write, it
does not appear to have significant effects on performance. In our benchmarks, TypeScript code
using a user-provided iterator on a class which stores a single array did not perform any slower
than code which used the default array iterator.

Though code including declarations of iterable classes can be compiled through the
transformations, not every possible syntax for such declarations is supported. Particularly, this
only enables the creation of classes which create methods by directly using the
Symbol.iterator static property as a key within the class body. In ordinary TypeScript, one
could store the value of that property in another variable and then declare a class which names
a method using that variable. In AssemblyScript all properties of classes must be statically
declared [8], meaning that one cannot use keys which depend on the value of a variable at

runtime.

41

5. Conclusions

We have demonstrated an approach which provides support for closures, iterators, and

for...of statements in AssemblyScript through an algorithmic transformation into ordinary

AssemblyScript code. This allows for code structure closer to what is possible in TypeScript
while showing similar or improved performance compared to analogous AssemblyScript code.
As well as the direct utility in ease of programming that this provides, it also suggests that we
may be able to replicate other features not provided in AssemblyScript while still leveraging the
existing compiler.

Improvements to the translation process could be made possible by avoiding the use of
the existing hooks. One could do so either by using a parser separate from AssemblyScript’s for
all of the transformations or by modifying the code of AssemblyScript’s parser itself so that it can
handle all of the pre-transformation structures. This would allow all of the transformations to be
applied in a single pass over the code, rather than relying on separate steps to process the
iterators and closures. It would also be useful as futureproofing, as the current dependence of
our extension on AssemblyScript’'s hooking may cause incompatibilities if the compiler’s API
changes in the future.

A potential expansion of the project would be to enable separately declared closures to
match in object type, allowing different closures to be used as arguments of the same function
or members of the same array. One could identify which closures share the same parameters
and return types and create a parent class that each closure’s object would extend. By including

a placeholder . func with the same parameters and return type in the parent class, we can use

the parent type for each variable and parameter which needs to store any of the child classes

and still be able to access the method of each object using . func calls as we do currently.

Closure transformation could also be expanded to support other forms of creating functions.

42

Currently, we focus only on the support of traditional function declarations, ignoring arrow
function expressions. While most of the behavior of arrow functions is identical to traditionally
declared functions, there are differences in scope binding behavior that may need to be
accounted for by the translation.

Another potential future step would be to expand the transformation of computed
property names. Since AssemblyScript does not support any way to dynamically add properties,
there is likely no way to recreate the behavior of all possible expressions, but those which have
values that are guaranteed to be predictable at compilation time could be translated into valid
AssemblyScript which behaves identically. For example a constant which is set to
Symbol.iterator at declaration then used as a key can be seen at compile time to behave
identically to using Symbol.iterator itself. This alongside the replacing of other Symbols
used in property declarations with unique identifiers could permit the replication of the behavior
of Symbols beyond just Symbol.1iterator. While Symbols are implemented within the
standard library of AssemblyScript [26], they are limited in functionality as they are unable to be
used as keys for properties [27].

Iterator transformation could also benefit from adding support for other related features
of TypeScript and JavaScript. While the extension allows iterator classes to be manually written
and used in for. . .of loops, it does not provide any replacement for the built-in iterators of
JavaScript which are not present in AssemblyScript's standard library [21]. The extension could
be modified to provide its own implementation of these iterators, which would allow for...of
loops to be used with built-in classes like Arrays as they are in ordinary TypeScript without
requiring additional coding from the user. Supporting translation of the Generator class and its
associated function* syntax would further reduce the coding necessary by allowing for

simpler and more concise declarations of iterators [28].

43

6. References

[1] A. Rossberg, B. Titzer, A. Haas, D. Schuff, D. Gohman, L. Wagner, A. Zakai, J.F. Bastien,
and M. Holman, “Bringing the Web Up to Speed with WebAssembly,” in Communications of the
ACM Vol. 61 No. 12, 2018. Available at https://dl.acm.org/doi/pdf/10.1145/3282510.

[2] MDN contributors. WebAssembly, 2023. Available at
https://developer.mozilla.org/en-US/docs/WebAssembly. Retrieved August 25, 2023.

[3] WebAssembly, 2023. Available at https://webassembly.org/. Retrieved August 25, 2023.

[4] The AssemblyScript Authors. Introduction, 2023. Available at

https://www.assemblyscript.org/introduction.html.
[5] The AssemblyScript Authors. Concepts, 2023. Available at

https://www.assemblyscript.org/concepts.html.
[6] The AssemblyScript Authors. Types, 2023. Available at

https://www.assemblyscript.org/types.html.

[7] Roadmap, 2023. Available at https://webassembly.org/roadmap/. Retrieved August 25, 2023.
[8] The AssemblyScript Authors. Implementation Status, 2023. Available at
https://www.assemblyscript.org/status.html.

[9] The AssemblyScript Authors. Runtime, 2023. Available at
https://www.assemblyscript.org/runtime.html.

[10] hitps://github.com/grievans/Transpiler-Project
[11] Emscripten Contributors. Emscripten 3.1.45-git (dev) documentation, 2015-2023. Available

at https://emscripten.org/. Retrieved August 25, 2023.

[12] Ashley Williams, 2018. Available at https://github.com/rustwasm/wasm-pack. Retrieved
August 25, 2023.

[13] B. Jacobs, E. Meijer, F. Piessens, and W. Schulte, Ilterators revisited: proof rules and
implementation, Formal Techniques for Java-like Programs, 2005. Available at
http://www.cs.ru.nl/~erikpoll/ftfijp/2005/Jacobs.pdf.

[14] C. Rybicki, Compiling from a Typed Dialect of Scheme to WebAssembly, Honors Thesis,
University of Massachusetts Amherst, 2020. Available at
https://people.cs.umass.edu/~arjun/archive/rybicki-honors-2020.pdf.

[15] J. Liu, A. Kimball, and A. C. Myers. “Interruptible iterators,” in Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL '06),
pages 283—-294, Association for Computing Machinery, New York, NY, USA, 2006. Available at
https://doi.org/10.1145/1111037.1111063.

[16] D. Pinckney, A. Guha, and Y. Brun. “Wasm/k: delimited continuations for WebAssembly,” in
Proceedings of the 16th ACM SIGPLAN International Symposium on Dynamic Languages (DLS
2020), pages 16—28. Association for Computing Machinery, New York, NY, USA, 2020. Available
at https://doi.org/10.1145/3426422.3426978.

[17] L. Phipps-Costin, A. Rossberg, A. Guha, D. Leijen, D. Hillerstrém, KC Sivaramakrishnan, M.
Pretnar, and S. Lindley. “Continuing WebAssembly with Effect Handlers,” 2023. Available at
https://doi.org/10.48550/arXiv.2308.08347

[18] Portability - WebAssembly, 2023. Available at https://webassembly.org/docs/portability/.
Retrieved October 6, 2023.

44

https://dl.acm.org/doi/pdf/10.1145/3282510
https://developer.mozilla.org/en-US/docs/WebAssembly
https://webassembly.org/
https://www.assemblyscript.org/introduction.html
https://www.assemblyscript.org/concepts.html
https://www.assemblyscript.org/types.html
https://webassembly.org/roadmap/
https://www.assemblyscript.org/status.html
https://www.assemblyscript.org/runtime.html
https://github.com/grievans/Transpiler-Project
https://emscripten.org/
https://github.com/rustwasm/wasm-pack
http://www.cs.ru.nl/~erikpoll/ftfjp/2005/Jacobs.pdf
https://people.cs.umass.edu/~arjun/archive/rybicki-honors-2020.pdf
https://doi.org/10.1145/1111037.1111063
https://doi.org/10.1145/3426422.3426978
https://doi.org/10.48550/arXiv.2308.08347
https://webassembly.org/docs/portability/

[19] MDN contributors. AsyncGenerator - JavaScript, 2023. Available at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global _Objects/AsyncGen
erator. Retrieved October 6, 2023.

[20] MDN contributors. for...of - JavaScript, 2023. Available at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of.
Retrieved August 25, 2023.

[21] MDN contributors. Iterator - JavaScript, 2023. Available at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Iterator#de
scription. Retrieved August 25, 2023.

[22] MDN contributors. Iteration protocols - JavaScript, 2023. Available at

https: vel r.mozilla.org/en- W \Yi ript/Reference/lteration_protocols.
Retrieved August 25, 2023.

[23] MDN contributors. “Computed Property Names,” in Object initializer - JavaScript, 2023.
Available at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object initializer
#computed_property _names. Retrieved August 25, 2023.

[24] MDN contributors. “High precision timing,” 2023. Available at
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/High_precision_timing.
Retrieved October 10, 2023.

[25] MDN contributors. “WebAssembly.Memory() constructor,” 2023. Available at
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Memory/Memory.
Retrieved October 10, 2023.

[26] The AssemblyScript Authors. Symbol, 2023. Available at
https://www.assemblyscript.org/stdlib/symbol.html.

[27] MDN contributors. Symbol - JavaScript, 2023. Available at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global _Objects/Symbol.
Retrieved August 25, 2023.

[28] MDN contributors. Generator - JavaScript, 2023. Available at

https: vel r.mozilla.org/en- W \Yi ript/Referen I I ject nerator.
Retrieved August 25, 2023.

45

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Iterator#description
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Iterator#description
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#computed_property_names
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#computed_property_names
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/High_precision_timing
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Memory/Memory
https://www.assemblyscript.org/stdlib/symbol.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator

7. Appendix: Benchmark Code and Transformation

Output Examples

7.1. “Closures of logarithms with varying bases”

See Figure 1 in section 4.1.2.

7.1.1. AssemblyScript with Closure Extension

//In this particular example, a closure approach is lengthier but
may be preferred for its clearer delineation of sections of the
function (keeping the logarithm code separate from the code using
those logarithms). The extension's advantages are more relevant in
longer code, e.g. that which needs to perform logarithms in
multiple places throughout, as it allows for the functions to be
reused later or exchanged for other operations with more ease than
in 7.1.2 or 7.1.3.
export function logNaturalsArrTest (maxCount: £f64, bases:
f64[]) :Float64Array {

const result = new Float64Array (<i32>maxCount) ;

if (bases.length < 1) {

return result;

}

function setBase (base: f64) {
const denominator: f64 = 1 / Math.log(base);
function logBase(x: f64): f64 {
return Math.log(x) * denominator;
}
return logBase;
}
const logFuncs = [setBase (bases[0])1];
for (let i = 1; i < bases.length; ++1i) {

//"unchecked" annotation used in AssemblyScript to skip
extra checks on array access, for cases where the index is already
known to be in bounds

(LogFuncs.push (setBase (bases[i])));
}
for (let 1 = 0; 1 < maxCount; ++1i) {
let val:f64d = 1i;

46

for (let j 0; j < logFuncs.length; ++3j) {

(val = logFuncs([3j] (val));
}
for (let j = bases.length - 1; j >= 0; --7) {
(val = bases[]] ** val);
}
(result[i] = (val));

}

return result;

7.1.1.1. Source-to-Source Compilation Output

class setBase 0 class parameters ({
public denominator: £f64;
constructor (base: f£64) {

this.base = base;

}

public base: fo64;

}

class logBase 1 class {

public parent: setBase 0 class parameters;
constructor (parent: setBase 0 class parameters) {
this.parent = parent;

bi

func(x: fo64): fod {

return Math.log(x) * this.parent.denominator;

}
export function logNaturalsArrTest (maxCount: £f64, bases:
f64[]) :Float64Array {
const result = new Float64Array (<i32>maxCount) ;
if (bases.length < 1) {
return result;
}
function setBase(base: f64):logBase 1 class {
let setBase 0 class parameters obj = new
setBase 0 class parameters (base,);
setBase 0 class parameters obj.denominator= 1 /
Math.log(setBase 0 class parameters obj.base);

47

let logBase = new
logBase 1 class(setBase 0 class parameters obj);
return logBase;

const logFuncs = [setBase (bases[0])];
for (let i = 1; i < bases.length; ++1i) {
(logFuncs.push (setBase (bases[i]))):

for (let 1 = 0; 1 < maxCount; ++1) {
let val:f64d = 1;
for (let j = 0; j < logFuncs.length; ++j) {
(val = logFuncs[]j].func(val));

}
for (let j = bases.length - 1; j >= 0; --7J) {
(val = bases[]] ** wval);

(result[i] = (val));
}

return result;

7.1.1.2. TypeScript Conversion

//Change in types ("f64" and "i32" are instead "number") and
removal of "unchecked ()" annotations
export function logNaturalsArrTest (maxCount: number, bases:
number[]) :Float64Array {
const result = new Float64Array (maxCount);
if (bases.length < 1) {
return result;
}
function setBase (base: number) ({
const denominator: number = 1 / Math.log(base);
function logBase (x: number): number {
return Math.log(x) * denominator;
}
return logBase;

}

const logFuncs = [setBase(bases[0])];
for (let i = 1; i < bases.length; ++1i) {
logFuncs.push (setBase (bases[1])) ;

48

}
for (let i = 0; 1 < maxCount; ++1i) {
let val: number = 1i;
for (let j = 0; J < logFuncs.length; ++3) {
val = logFuncs[j] (val);
}
for (let j = bases.length - 1; j >= 0; --7) {
val = bases[j] ** val;
}
result[i] = val;
}
return result;
}

7.1.2. AssemblyScript Storing Denominators without Closures

export function logNaturalsArrTestNoClosureSavingDenoms (maxCount:
f64, bases: f64[]):Float64Array {
const result = new Float64Array (<i32>maxCount) ;
if (bases.length < 1) {
return result;

}

const denoms: fo6d[] = [];
for (let i = 0; i < bases.length; ++1i) {
(denoms.push (1l / Math.log(bases[i]))):
}
for (let i = 0; 1 < maxCount; ++i) {
let val: f64 = i;
for (let j = 0; J < denoms.length; ++3j) {
(val = Math.log(val) * denoms[j]):
}
for (let j = bases.length - 1; j >= 0; --7) {
(val = bases[]J] ** val);
}
(result[i] = val);

}

return result;

49

7.1.3. AssemblyScript “Naive” Approach

//Shorter code but worse performance than the others above
export function logNaturalsArrTestNoClosureNoSavingDenoms (maxCount:
f64, bases: f64[]):Float64Array {
const result = new Float64Array (<i32>maxCount) ;
if (bases.length < 1) {
return result;

}

for (let i = 0; 1 < maxCount; ++1i) {
let val: fo64 ig
for (let j = j < bases.length; ++3j) {

0; J
(val = Math.log(val) / Math.log(bases[7])):
}

for (let j = bases.length - 1; j >= 0; --3) {
(val = bases[]] ** val);
}
(result[i] = wval):;

}

return result;

7.2. “Closures storing varying functions and incrementing
variables”

See Figure 2 in section 4.1.2.

Note that the AssemblyScript code in this example uses max () and min () functions not
prefixed with Math . ; in AssemblyScript, these compile directly to the equivalent WebAssembly

instructions. Since TypeScript does not have these functions, these are replaced with
Math.max () and Math.min () in the TypeScript equivalent of this code, along with replacing

the types and removing the unchecked () annotations.

50

7.2.1. AssemblyScript with Closure Extension

is here used to indicate types to be changed during the source-to-source

compilation process, as described in section 4.1.3. The name used to annotate this is

configurable in the arguments of our compiler.

(x:f64d4)=>f04d {
function incrY(x:£64) :f64 {
return f(x,y++);

y:£64) :

}

return incryY;

export function varyingFunctionTest (operators:

operands: Float64Array, repeats:132):
function chooseOperator (operator:
if (operator == 0) {
return (x:f64, y:f64) =>
} else if (operator == 1) {
return (x:f64, y:f64) =>
} else if (operator == 2) {
return (x:f64, y:f64) =>
} else if (operator == 3) {
return (x:f64, y:f64) =>
} else if (operator == 4) {
return (x:f64, vy:f64) =>
} else if (operator == 5) {
return (x:f64, y:f64) =>
} else if (operator == 6) {
return (x:f64, vy:f64) =>
} else if (operator == 7) {
return (x:f64, y:f64) =>
} else if (operator == 8) {
return (x:f64, y:f64) =>
} else if (operator == 9) {
return (x:f64, vy:f64) =>
} else if (operator == 10) {
return (x:f64, y:f64) =>
} else {
return (x:f64, vy:f64) =>
}
}
function makelIncrementY (f: (x:£f64,

Int32Array,

f64 {

132) :(x:f64d,y:f6d)=>f64d {
X + v

X = V3

X * y;

x / y;

x ** y;
Math.log(x) / Math.log(y):;
Math.atan2 (y, x);
Math.hypot (x, V) ;

max (x, y);

min(x, y);

Math.random () * (y-x) + x;
0;
v:f64)=>f64,

51

const functionArray: StaticArray<(x:f64,y:f64)=>f64> = new
StaticArray<(x:f64,y:f64)=>f64> (operators.length);

const closureArray: StaticArray< > = new
StaticArray< > (operators.length * operands.length);
for (let i = 0; 1 < operators.length; ++i) {
(functionArray[i] = chooseOperator (operators[i])):;

}
for (let i = 0; 1 < operators.length; ++i) {
for (let j = 0; J < operands.length; ++73) {
(closureArray[i * operands.length + j] =
makeIncrementY (functionArray[i], operands[j])):

}

}
let output:f64 = 0;

for (let i = 0; 1 < repeats; ++1i) {
for (let j = 0; j < closureArray.length; ++3j) {
(output = closureArray[]j] (output));

}

return output;

7.2.2. AssemblyScript without Extension

Shown here is the best-performing of the equivalents tested in ordinary AssemblyScript.

Additional versions can be seen as examples in the project source code [10].

export function varyingFunctionTestNoClosures (operators:
Int32Array, operands: Float64Array, repeats:i32):f64d {
function chooseOperator (operator:i32): (x:f64,y:f64)=>f64 {

if (operator == 0) {
return (x:f64, y:f64) => x + y;
} else if (operator == 1) {
return (x:f64, y:f64) => x - vy;
} else if (operator == 2 {
return (x:£f64, y:f64) => x * y;
} else if (operator == {
=> x / y;

} else if (operator ==
return (x:f64, y:f64
} else if (operator == 5

)
)
)

return (x:f64, vy:f64)
)
) => x ** y;
)

52

return (x:f64, y:f64) => Math.log(x) / Math.log(y):

} else if (operator == 6) {

return (x:f64, y:f64) => Math.atan2(y, x);
} else if (operator == 7) {

return (x:f64, y:f64) => Math.hypot(x, vVy):;
} else if (operator == 8) {

return (x:f64, y:f64) => max(x, Vy);
} else if (operator == 9) {

return (x:f64, y:f64) => min(x, Vy);
} else if (operator == 10) {

return (x:£f64, y:f64) => Math.random() * (y-x) + x;
} else {

return (x:f64, y:f64) => 0;

}
const functionArray: StaticArray<(x:f64,y:f64)=>f64> = new
StaticArray<(x:f64,y:f64)=>f64> (operators.length);

const yArray: Float64Array = new Float64Array(operators.length
* operands.length) ;

const functionArray2: StaticArray<(x:f64,y:f64)=>f64> = new
StaticArray<(x:f64,y:f64)=>f64> (operators.length * yArray.length);

for (let i = 0; 1 < operators.length; ++i) {

(functionArray[i] = chooseOperator (operators([i])):;
}
for (let i = 0; i1 < operators.length; ++i) {
for (let j = 0; Jj < operands.length; ++7j) {
const index:132 = i * operands.length + 7j;
(yArray[index] = operands[]j]):

(functionArray2|[index] =
chooseOperator (operators[i]));
}
}
let output:f64 = 0;
for (let i = 0; 1 < repeats; ++1i) {
for (let 3:i32 = 0; j < yArray.length; ++3j) {
(output = functionArray2[]j] (output,
yArrayl[jl++));
}
}

return output;

53

7.3. lterator Benchmarking

7.3.1. Custom lterator Classes

These classes were used within multiple benchmarks, as shown in 7.3.2 and 7.3.3.

class Float64Arraylterable {
array: Float64Array;
constructor (array: Float64Array) {
this.array = array;
}
[Symbol.iterator] (): Float64Arraylterator {
return new Float64Arraylterator (this);

}
class Float64Arraylterator ({
source: Float64Arraylterable
constructor (source: Float64Arraylterable) {
this.source = source;
this.index = 0;
}
index: 132;
next () : IteratorResult<fo64d> {
if (this.index >= this.source.array.length) {

return (new IteratorResult<fo4d> (true,
this.source.array[0]));

} else {

return (new IteratorResult<fo4d>(false,
this.source.array[this.index++]));

}
}

[Symbol.iterator] (): Float64Arraylterator {
return this;

}
class IteratorResult<T> {
done: boolean;
value: T;
constructor (done:boolean, value:T) {
this.done = done;
this.value = value;

54

7.3.2. “Iteration over array of bases for logarithms and exponents”

See Figure 3 in section 4.2.2.

7.3.2.1. AssemblyScript using Custom lterator

export function logarithmTestWithIterators (maxCount: f64, bases:
Float64Array) :Float64Array |
const result = new Float64Array (<i32>maxCount) ;
if (bases.length < 1) {
return result;
}
for (let 1 = 0; i < maxCount; ++i) {
(result[i] = 1i);
}
for (let base of new Float64Arraylterable (bases)) {
const denom = Math.log(base);
for (let i = 0; i < maxCount; ++1) {
(result[i] = base ** (Math.log(result[i]) /
denom)) ;
}
}
return result;
}
7.3.2.1.1. Source-to-Source Compilation Output
export function logarithmTestWithIterators (maxCount: f64, bases:

Float64Array) :Float64Array |
const result = new Float64Array (<i32>maxCount) ;
if (bases.length < 1) {
return result;

}

for (let 1 = 0; 1 < maxCount; ++1) {
(result[i] = 1);
}
for (let iterator = new
Float64Arraylterable (bases) .Symbol iterator(),
_result = iterator.next(),
base = result.value; ! result.done;
_result = iterator.next(), base = result.value) {
const denom = Math.log(base);
for (let 1 = 0; i < maxCount; ++i) {

55

(result[i] = base ** (Math.log(result[i]) /
denom)) ;

}

return result;

7.3.2.2 AssemblyScript without Iterators

export function logarithmTestWithoutIterators (maxCount: f64, bases:
Float64Array) :Float64Array {
const result = new Float64Array (<i32>maxCount) ;
if (bases.length < 1) {
return result;
}

for (let 1 = 0; 1 < maxCount; ++1) {

(result[i] = 1i);

}
for (let j = 0; J < bases.length; ++3) {

const base = (bases[71]);

const denom = Math.log(base) ;

for (let 1 = 0; i < maxCount; ++1i) {

(result[i] = base ** (Math.log(result[i]) /

denom)) ;

}

return result;

7.3.3. “lteration over array nested with incrementation loop, with varying
loop nesting and number of iterations”

See Figure 4 in section 4.2.2.

export function nolteratorArrayOutside (maxCount: f64, factors:
Float64Array) :Float64Array |
const result = new Float64Array (<i32>maxCount) ;
if (factors.length < 1) {
return result;
}

for (let 1 = 0; 1 < maxCount; ++1) {

(result[i] = 1);
}
for (let j = 0; J < factors.length; ++3J) {
const val = unchecked(factors([j]):;
for (let i = 0; i < maxCount; ++1) {
(result[i] *= val);

}

return result;

export function iteratorArrayOutside (maxCount: f64, factors:
Float64Array) :Float64Array {
const result = new Float64Array (<i32>maxCount) ;
if (factors.length < 1) {
return result;

}

for (let 1 = 0; 1 < maxCount; ++1) {
(result[i] = 1);
}
const values = new Float64Arraylterable (factors);

for (let val of wvalues) {
for (let 1 = 0; 1 < maxCount; ++1i) {
(result[i] *= wval);

}

return result;

export function nolteratorArrayInside (maxCount: f64, factors:
Float64Array) :Float64Array {
const result = new Float64Array (<i32>maxCount) ;
if (factors.length < 1) {
return result;
}
for (let i = 0; 1 < maxCount; ++1i) {
(result[i] = 1);
}
for (let 1 0; 1 < maxCount; ++1) {
for (let j = 0; j < factors.length; ++3j) {
const val = unchecked (factors([]j]) -
(result[i] *= wval);

57

return result;

export function iteratorArrayInside (maxCount: £f64, factors:
Float64Array) :Float64Array |

const result =

new Float64Array (<i32>maxCount) ;

if (factors.length < 1) {
return result;

}

for (let i = 0;
(r

}

const values =
for (let 1 = 0;

i < maxCount; ++i) {
esult[i] = 1);

new Float64Arraylterable(factors);
i < maxCount; ++i) {

for (let val of wvalues) {

}

return result;

(result[i] *= wval);

58

